데카르트좌표(Cartesian coordinates)

사교좌표(斜交座標)라고도 한다. 즉, 축이 반드시 직교하지는 않는 좌표축을 빗좌표축이라 하고 이 좌표축에 대한 좌표를 빗좌표라 한다. 이것을 데카르트좌표·평행좌표 등으로도 부른다.
평면 위의 1점 O에서 만나는 2개의 유향직선 Ox, Oy를 생각하고, 이 평면 위의 임의의 점 P에서 Ox, Oy에 평행한 직선을 그어 Ox, Oy와의 교점을 L, M이라 한다. 점 L의 직선 Ox 위에서의 좌표가 x, 점 M의 직선 Oy 위에서의 좌표가 y일 때, 주어진 점 P에 순서쌍 (x, y)를 대응시키면, 이 좌표평면 위의 모든 점은 순서쌍 (x, y)와 1대 1로 대응하게 된다. 이때, (x, y)를 점 P의 좌표(빗좌표)라 한다.
이와 같이, 점 P의 좌표를 정할 수 있도록 설정한 1점 O, 유향직선 Ox와 Oy의 짝을 빗좌표계라 하고, O-xy로 나타낸다. 이때, O를 원점, Ox, Oy를 좌표축이라 한다. 특히, 축이 직교하는 경우를 직교좌표계라 한다. 빗좌표계는 3차원 공간 및 n차원 공간에서도 정의된다.
- 다음
- 델토이드(deltoid) 2017.02.28
- 이전
- 데카르트의 엽선(folium of Descartes) 2017.02.28
